Abstract
The utilization of sales data as a foundation for strategic decision-making plays a crucial role in supporting the operational success of Merchant E-Stall Crunchy. However, the high variability and volume of daily transaction data create challenges in accurately identifying sales patterns. To address this issue, this research proposes the application of a deep learning approach—Long Short-Term Memory (LSTM)—to perform time series–based prediction of sales transaction values. The objective of this study is to develop a predictive model capable of uncovering historical patterns, seasonal trends, and demand fluctuations, thereby providing insights that support managerial decision-making. The Design Science Research methodology is employed, covering problem identification, model development, implementation, and evaluation. The dataset consists of daily sales transactions from E-Stall Crunchy, including transaction dates, product types, and sales values. The LSTM model is implemented to predict daily transaction values, and its performance is evaluated using MAE and RMSE metrics. The expected outcome includes an accurate prediction model and analytical recommendations that can support strategies for improving sales performance and operational efficiency.Keywords
- Time Series
- Sales Prediction
- LSTM
- Deep Learning
- E-Stall Crunchy
References
- Achmad, Muhamad Iradat et al. 2025. “Syaraf Tiruan Cerebellar Model Articulation Controller ( CMAC ) dengan Formulasi Pemetaan.” 9: 1–24.
- Meitasari, Devina Finny, and Kukuh Sinduwiatmo. 2024. “Persepsi Konsumen Terhadap Kualitas Layanan Online GoFood.” (1): 89–99.
- Ahmed, Dozdar Mahdi, Masoud Muhammed Hassan, and Ramadhan J Mstafa. 2022. “A Review on Deep Sequential Models for Forecasting Time Series Data.” 2022(Dl).
- Vangibhurathachhi, S. K. (2025). Enhancing Time Series Forecasting using DRL with attention-based neural architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 92-99.
- Fadillah, Z. I. (2025). Strategi Inovasi dan Transformasi Digital dalam Meningkatkan Daya Saing Bisnis Di Era Industri 4.0. JMEB Jurnal Manajemen Ekonomi & Bisnis, 3(01).
- Santoso, S., Suwaryo, N., Nurali, N., Gunarso, S., Tugiman, T., Paryadi, A., & Hidayah, S. (2025). Optimalisasi Analisis Penjualan dan Prediksi Permintaan Pada UMKM dengan Business Intelligence di Kelurahan Pematang Sulur. I-Com: Indonesian Community Journal, 5(2), 939-952.
- Mojtahedi, F Fazel, and N Yousefpour S H Chow. 2025. “Deep Learning for Time Series Forecasting : Review and Applications in Geotechnics and Geosciences.” Archives of Computational Methods in Engineering 32(6): 3415–45. https://doi.org/10.1007/s11831-025-10244-5.
- Wahyuningtyas, U. A., & Fadil, C. (2024). Strategi Ekonomi dalam Mengatasi Keterbatasan Data untuk Meningkatkan Proses Prediksi Penjualan TV. Jurnal Ilmiah Wahana Pendidikan, 10(16), 865-871.
- Ferdowsy, Faria. 2024. “Deep Learning-Based Time Series Prediction Techniques.” (February).
- Ahmed, Shams Forruque et al. 2023. 56 Artificial Intelligence Review Deep Learning Modelling Techniques : Current Progress , Applications , Advantages , and Challenges. Springer Netherlands. https://doi.org/10.1007/s10462-023-10466-8.
- Yudistira, N., Alfiansih, L. M. D., Andriyani, N. I., Essayem, W., Nurdian, I. W., Maghfiroh, N. A., & Maulida, N. (2023). Prediksi Deret Waktu Menggunakan Deep Learning. Universitas Brawijaya Press.
- Natzir, Sadam Muhammad et al. 2025. “Prediksi Harga Cryptocurrency Xlm Menggunakan Metode Deep Learning Lstm Dan Gru.” 16(c): 49–58.
- Salsabila, S. E. (2020). Model prediksi penjualan multi-item time series berbasis machine learning menggunakan metode autoregressive integrated moving average dan long short-term memory pada produk perishable (studi kasus: retail sayur tosaga).
- Rane, Nitin Liladhar, Mallikarjuna Paramesha, Saurabh P Choudhary, and Jayesh Rane. 2024. “Partners Universal International Innovation Journal ( PUIIJ ) Artificial Intelligence , Machine Learning , and Deep Learning for Advanced Business Strategies : A Review Partners Universal International Innovation Journal ( PUIIJ ).” (June): 10–11.
- Saputra, D., Berry, Y., Hamali, S., Gaspersz, V., Khasanah, M. A., Syamil, A., ... & Panudju, A. A. T. (2023). MANAJEMEN OPERASI: Inovasi, Peluang, dan Tantangan Ekonomi Kreatif di Indonesia. PT. Sonpedia Publishing Indonesia.
- Hadi, A., Judijanto, L., Purwandari, N., Zain, N. N. E., Rambe, K. H., ... & Yusufi, A. (2025). Artificial Intelligence: Teori, Konsep, dan Implementasi di Berbagai Bidang. PT. Sonpedia Publishing Indonesia.
- Natzir, S. M., & Jatiprasetya, H. (2025). PREDIKSI HARGA CRYPTOCURRENCY XLM MENGGUNAKAN METODE DEEP LEARNING LSTM DAN GRU: PREDICTING XLM CRYPTOCURRENCY PRICES USING LSTM AND GRU DEEP LEARNING MODELS. HOAQ (High Education of Organization Archive Quality): Jurnal Teknologi Informasi, 16(1), 49-58.
- Ren, L., Jia, Z., Laili, Y., & Huang, D. (2023). Deep learning for time-series prediction in IIoT: progress, challenges, and prospects. IEEE transactions on neural networks and learning systems, 35(11), 15072-15091.
- Al-Husaini, M., Saputra, P. A., Renaldi, M., & Maulana, R. A. (2024). Prediksi Tsunami Dengan Metode Ensemble Machine Learning. PT. Sonpedia Publishing Indonesia.